Considere dois pontos, A e B, tais que A está mais alto do que B, mas não na mesma vertical. Queremos ligá-los por uma rampa: qual deve ser a forma dessa rampa para que um objeto deslizando nela sem atrito, sob a ação da gravidade, percorra o trajeto entre A e B no menor tempo possível? É o chamado problema da braquistócrona, palavra derivada do grego que significa "tempo mais curto".
À primeira vista, parece óbvio que a rampa deve ser reta (como a maioria das rampas na vida real, aliás), já que a linha reta corresponde à menor distância entre os dois pontos. O caminho mais curto também deve ser o mais rápido, correto? Só que não, como descobriu Galileu Galilei (1564–1642) em 1638.
Em "Duas Novas Ciências", ele mostrou que a descida numa rampa em forma de arco de círculo demora menos tempo do que a descida ao longo do segmento de reta que une os extremos desse arco de círculo. A partir dessa observação, Galileu conjecturou que a solução do problema da braquistócrona, isto é, a forma da rampa que corresponde à descida mais rápida, deve ser um arco de círculo.